
Nonequilibrium Phase Transitions Associated with DNA Replication

Hyung-June Woo* and Anders Wallqvist

Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center,
U.S. Army Medical Research and Materiel Command, Fort Dietrick, Maryland 21702, USA

(Received 26 August 2010; published 9 February 2011)

Thermodynamics governing the synthesis of DNA and RNA strands under a template is considered

analytically and applied to the population dynamics of competing replicators. We find a nonequilibrium

phase transition for high values of polymerase fidelity in a single replicator, where the two phases

correspond to stationary states with higher elongation velocity and lower error rate than the other. At the

critical point, the susceptibility linking velocity to thermodynamic force diverges. The overall behavior

closely resembles the liquid-vapor phase transition in equilibrium. For a population of self-replicating

macromolecules, Eigen’s error catastrophe transition precedes this thermodynamic phase transition during

starvation. For a given thermodynamic force, the fitness of replicators increases with increasing polymer-

ase fidelity above a threshold.
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The replication of genes by biological organisms lies at
the core of their activities, seemingly driving competitions
for survival [1]. The process on the molecular level is
driven by enzymes (polymerases) catalyzing the growth
of a DNA primer strand (the nascent chain of nucleotides
complementary to the template strand) based on the
Watson-Crick base pairing rules (A is paired with T and
G with C). Because of their movement along the chain,
polymerases belong to molecular motors converting
chemical free energy into work [2,3]. The copying process,
however, involves errors, whose rate varies with the repli-
cation conditions as has been observed recently [4–7]. This
thermodynamic interpretation of replication may be rele-
vant to many biological phenomena: mutation rates of
bacteria increase under stress such as starvation [8]. RNA
viruses maintain their mutation rates near the threshold
of error catastrophe, beyond which populations cannot
sustain stable genomes [9,10].

Compared to a polymerase-nucleotide strand complex
(‘‘replicator’’) far from equilibrium primarily driven by
external chemical potentials, a replicator near equilibrium
copies its genome with higher error rates, which make
extra contributions to the entropy production [4]. In this
Letter, we show that the transition between these
externally driven and disorder-driven regimes of replica-
tion exhibits all characteristic features of phase transitions
one normally expects in equilibrium. Many systems driven
out of equilibrium exhibit phase transitionlike behavior,
including models with absorbing states [11] and the evo-
lution of opinions in social networks [12]. The features
observed here, however, are unique in the sense that they
offer a close nonequilibrium analog of the liquid-vapor
transition. We combine this single molecule thermodynam-
ics with the population dynamics of replicators [9], which
provides a thermodynamic interpretation of molecular
evolution.

Considering first macroscopic thermodynamics of a
single replicator in a reservoir, the chemical reaction
involved is

ðDNAÞN þM Ð ðDNAÞNþ1 þ P; (1)

where ðDNAÞN is the primer strand of length N, M denotes
one of four nucleoside triphosphate (NTP) monomers, and
P is pyrophosphate (PPi). The entropy of the system plus
surrounding S ¼ SðNm;Np; NÞ is a function of the number

of free monomers Nm, the number of PPi Np, and the chain

length N in units of monomer size. Their changes are
related by dNm ¼ �dNp ¼ �dN. The entropy change

(or production) can be written as [13]

dS ¼ ��m

T
dNm ��p

T
dNp þ f

T
dN ¼ f��G

T
dN; (2)

where �i ¼ �T@S=@Ni are the chemical potentials, T is
temperature, f ¼ T@S=@N is the external force acting
on the primer strand, and �G ¼ �p ��m ¼ �G� �
T lnð½M�=½P�Þ is the Gibbs energy change of reaction (1)
(Boltzmann constant is 1). The entropy production rate
_S can thus be written as

_S ¼ Fv; (3)

where v ¼ dN=dt is the elongation velocity and the ther-
modynamic force F imposed by the reservoir is given by

F ¼ f� �G

T
: (4)

The two terms in Eq. (4) represent mechanical and
chemical driving forces of the reservoir. We have assumed
that the reaction and movements are tightly coupled:
Eqs. (3) and (4) correspond to a special case of a more
general expression for molecular motors [Eq. (7) of
Ref. [2] with reaction rate equal to v]. Forces acting on
nucleotide strands or polymerase can be controlled with
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optical tweezers [14], and we assumed that the direction
of f coincides with that of elongation.

Stochastic dynamics allows us to relate this thermody-
namic description to molecular features [2,4,5] and derive
the constitutive relation between F and v. The attachment
(detachment) rates of monomer � base-paired to � are
denoted k�ð�j�Þ, where � and � are any of m possible
monomer types [m ¼ 4 for DNA (RNA)]. The conditional
probability Pnð�n; tj�Þ of finding the chain of length n at
time t with sequence �n � ð�n;�n�1; . . . ; �1Þ under a
given template sequence � satisfies

d

dt
Pnð�n; tj�Þ ¼ kþð�nj�nÞPn�1ð�n�1; tj�Þ

þX
�0
k�ð�0j�nþ1ÞPnþ1ð�0�n; tj�Þ

� k�ð�nj�nÞPnð�n; tj�Þ
�X

�0
kþð�0j�nþ1ÞPnð�n; tj�Þ: (5)

We write Pnð�n; tj�Þ ¼ pnðtÞqnð�nj�Þ [4], where pnðtÞ is
the probability of having chain length n at time t. Since the
rate constants k�ð�j�Þ in Eq. (5) are all local functions and
do not depend on neighboring nucleotides, we expect

qnð�nj�Þ ¼ qð�nj�nÞqð�n�1j�n�1Þ � � �qð�1j�1Þ (6)

in the stationary state, where q � q1. Using Eq. (6) in
Eq. (5), assuming that the template sequence distribution
is spatially uncorrelated, and averaging both sides over
�nþ1, we can write

dpn

dt
qð�j�Þ ¼ kþð�j�Þpn�1 þ J�qð�j�Þpnþ1

� k�ð�j�Þqð�j�Þpn � Jþqð�j�Þpn; (7)

where Jþ ¼ P
�hkþð�j�Þi�, J� ¼ P

�hk�ð�j�Þqð�j�Þi�
are the rates of chain growth and shrinkage.

Summing both sides of Eq. (7) over n,

kþð�j�Þ þ ½J� � k�ð�j�Þ � Jþ�qð�j�Þ ¼ 0; (8)

whereas multiplying both sides of Eq. (7) by n and sum-
ming over n using v ¼ P

nndpn=dt, we have

qð�j�Þv ¼ kþð�j�Þ � J�qð�j�Þ: (9)

If we sum Eq. (9) over � and average over �, we get

v ¼ Jþ � J�; (10)

where
P

�qð�j�Þ ¼ 1 has been used. Equations (8) and
(10) give

qð�j�Þ ¼ kþð�j�Þ
k�ð�j�Þ þ v

: (11)

A substitution of Eq. (11) into the normalization conditionP
�hqð�j�Þi� ¼ 1 yields

X
�

�
kþð�j�Þ

k�ð�j�Þ þ v

�
�
¼ 1; (12)

which determines the velocity implicitly. From Eq. (11),
the fraction � (error rate) of monomers for which � � �y,
where �y is the correct Watson-Crick complementary base
of �, can be obtained by

� ¼
� X
���y

qð�j�Þ
�
�
: (13)

The backward rate k� can be written in terms of the
forward rate kþ introducing g�� by

k�ð�j�Þ ¼ e�g��=Tkþð�j�Þ: (14)

The parameter �g�� corresponds to the binding free en-

ergy of a single monomer � against the template base �.
This free energy, however, is a potential of mean force
for the given fixed nucleotide pair. Because of the contri-
bution of sequence disorder (see below), this parameter is
in general not equal to the change in external chemical
potentials �G. The entropy production per monomer
added is [4]

F¼
�X

�

�
g��qð�j�Þ

T
�qð�j�Þlnqð�j�Þ

��
�
�hg��i

T
þD;

(15)

the first term arising from the consumption of monomers
and D ¼ �P

�hqð�j�Þ lnqð�j�Þi� from the sequence dis-

order, the Gibbs entropy of the uncertainty of � paired to a
known � due to copying errors. Comparing Eqs. (4) and
(15), we note that if D ¼ 0, hg��i ¼ f� �G: the average

of g�� coincides with the external thermodynamic driving

force. With D � 0, however, the experimentally control-
lable parameter is the thermodynamic force F given by
Eq. (4) rather than hg��i. Combining Eqs. (12) and (14),

we observe that v ¼ 0 when
P

�heg��=Ti� ¼ 1, whereas if

g�� ! 1, v ! Jþ.
To derive explicit formulas for stationary properties, we

adopt the following simple model:

kþð�j�Þ ¼ ���ykþ ð1� ���yÞ�k;
g��=T ¼ g� ð1� ���yÞ ln�; (16)

and a uniform distribution of �, where 0<�< 1 and
� � 1 are the ratios of monomer insertion rates kþ and
dissociation constants k�=kþ for incorrect to correct base
pairs, respectively, (the magnitude of binding free energy is
smaller for incorrect pairs). The equilibrium occurs when
g ¼ geq � � ln½1þ ðm� 1Þ=��. Equation (12) gives for

�v ¼ v=k,
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�v ¼ �þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �e�gðm� 1þ �� e�g�Þ

q
; (17a)

� ¼ 1
2½1� e�g � �þ �ðm� e�g�Þ�: (17b)

The error rate from Eq. (13) in this case becomes

� ¼ m� 1

e�g�þ �v=�
; (18)

while Eq. (15) gives

F ¼ lnð1þ eg �vÞ
e�g þ �v

þ ðm� 1Þ lnð1þ eg �v=��Þ
e�g�þ �v=�

: (19)

It is useful to consider the limit of perfect selectivity
� ! 0. The values of �v, �, and F in this limit are
�v0 ¼ 1� e�g if g > 0 and �v ¼ 0 otherwise,

�0 ¼
8<
:
1� eg if geq � g � 0;
0 if g � 0;

(20)

F0 ¼
8<
: ð1� egÞ ln

��
m�1
e�g�1

�
1
�

�
if g � 0;

g if g � 0:
(21)

Figure 1 shows the dependence of stationary properties on
g. The singular behavior of F versus g was observed from
numerical simulations in Ref. [4], which is revealed here
analytically. Near equilibrium, a polymerase can attach
(detach) monomers with two different relative rates for
a given F [Fig. 1(c)]. We also tested Eq. (6) by direct
Monte Carlo simulations of Eq. (5), where chains were

grown stochastically under a random template sequence �
with the initial condition n ¼ 0. The numerical results
shown in Fig. 1 confirm Eq. (6).
Equation (19) should match Eq. (4) in stationary states,

and Eqs. (17)–(19) give the dependence of v and � on F
parametrically through g [Fig. 2], which resembles the p-V
isotherms of van der Waals gas: below a critical �c, the
system exhibits multiple values of v and � for a given F.
Most polymerases have low mismatch rates (� & 10�4)
and are expected to be subcritical. As � ! 0, Eqs. (20) and
(21) give

F ¼ �0 ln½ðm� 1Þð��1
0 � 1Þ=��: (22)

As in equilibrium thermodynamics, it is reasonable to rule
out the segment of v and � values violating the stability
criterion for the susceptibility � ¼ @v=@F > 0. When F is
lowered (e.g., from starvation), one reaches a spinodal
where � ! 1, and v and � discontinuously jump to
smaller and larger values, respectively. It is expected that
the distributions of v and � would become unusually broad
at the critical point where @F=@v ¼ @2F=@v2 ¼ 0.
Figure 3 shows the phase diagram analogous to the p-T
diagram of fluids, where the stability limit of the low-error
phase terminates at the critical point (Fc, �c), which shifts
to smaller values with increasing �.
How will this behavior of a single replicator affect

the population dynamics of competing molecules? Such a
population exists as a quasispecies, a cloud of variable
genotypes surrounding a master sequence [9,15–17],
whose evolution is described by dni=dt ¼

P
jQijrjnj,

where ni is the number of replicators with genotype i of
length L, ri ¼ �vki=L is its replication rate (‘‘fitness’’) with
NTP-incorporation rate ki, and Qij ¼ �dijð1� �ÞL�dij is

the mutation matrix between i and j with Hamming dis-
tance dij (the number of nucleotides that are different). The

more common form of the quasispecies dynamics can be
derived from xi ¼ ni=N, where N ¼ P

ini is the total
population size. Using

P
iQij ¼ 1, one can also write

dN=dt ¼ rN, where r ¼ P
irixi is the mean fitness of the

population. Equation (3) is generalized as
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FIG. 1 (color online). Dependence of stationary properties on
g. (a) �v for m ¼ 4 and � ¼ 5; (b) � for m ¼ 4 and � ¼ 5; (c) F
for m ¼ 4 and � ¼ 5; (d) convergence of �v in numerical
simulations for m ¼ 2, � ¼ 10, � ¼ 10�3, and g ¼ 0:1; and
(e) convergence of � in simulations for m ¼ 4, � ¼ 5,
� ¼ 10�2, and g ¼ 0. Size of time step in Monte Carlo was
0.01 in units of k�1. Circles in (a)–(c) are from the numerical
simulations.
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FIG. 2 (color online). (a) Velocity and (b) error rate as func-
tions of F for m ¼ 4 and � ¼ 5. The solid line in (b) corre-
sponds to Eq. (22). The critical point is reached when
�c ¼ 1:83	 10�3.
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_S ¼ F
X
i

niriL ¼ NFLr; (23)

which shows that fitness increases are driven by the
entropy production.

The constitutive relation r ¼ rðFÞ on the population
level can now be obtained from the solution of Eigen
model in the infinite population limit [16]. For the simplest
landscape ki=k ¼ �i1ðA� 1Þ þ 1, where i ¼ 1 denotes the
master sequence with relative fitness A > 1, the mean
fitness becomes

r ¼ v

L
	

�
Ae�L� if � < �
;
1 otherwise;

(24)

where

�
 ¼ lnA

L
(25)

is the error threshold [9]. For � > �
, therefore, the con-
stitutive relation on the population level remains the same
and no nontrivial collective effect occurs. With � below the
threshold, on the other hand, Lr > v and the population
enhances its collective growth rate by maintaining the
quasispecies peaked near the master sequence. Equation
(25) can be combined with Eq. (18) to give boundaries of
genomic stability in the phase diagram [Fig. 3]: �ðF; �Þ<
lnA=L. If F decreases during starvation under a constant
�t < � < �c, where �t corresponds to a ‘‘triple point,’’ the
error catastrophe transition (‘‘melting’’) will be followed
by the thermodynamic transition (‘‘evaporation’’).

Can a population with highly error-prone polymerases,
such as rudimentary ribozymes in an RNA environment
[18], spontaneously evolve increasingly lower � values and
eventually enter the regime of genomic stability?
Evolutionary walks with positive changes in r are thermo-
dynamically favorable for a given F [Eq. (23)], which
occurs in Fig. 3 for � & 10�2 where @ �v=@� < 0. An

emergence of biological information from a population
of random sequences may have required crossing the ther-
modynamic threshold where @ �v=@� changes sign.
We assumed that the template sequence is spatially

uncorrelated and mutations occur only via substitutions.
Real genomic sequences show long range correlations
often described by power laws, which can be modeled
by considering insertion, deletion, and duplication events
[19–21]. It will be of interest to extend the current study to
examine such effects.
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